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Abstract—Advanced image processing algorithms usually re-
quire high computing performance. Today’s personal computers
(PCs) offer satisfying resources for implementation of image
processing tasks. However, as the image processing techniques
are becoming more and more complex other implementation
possibilities have to be searched.

Since image processing algorithms usually comply with the
Single Instruction Multiple Data (SIMD) model, implementation
efforts using such hardware resources are suitable. An example
of the SIMD hardware component available nowadays is the
graphics processor (GPU) embedded in modern graphics cards
manufactured for PCs.

In this paper, the implementation of a blind image deconvolu-
tion algorithm using graphics processor as the SIMD computing
resource is presented. The resulting performance is compared
to the performance achieved on a common general-purpose
processor (CPU).

I. INTRODUCTION

Advanced image processing algorithms often require high
computing performance. The complexity of such algorithms
can easily drain available hardware resources. General-purpose
processor based PC is usually the initial platform that a
developer would use for their implementation. The absence
of sufficient computing performance can become a limiting
factor. One of the solutions to overcome the performance
insufficiency is to extend the hardware platform (PC) with
a computing accelerator.

There exist well proven hardware platforms for computing
acceleration (DSP and FPGA for example), but another one
arose from the area of PC in recent years. The evolution of
the PC graphics cards brought new processing units, graphics
processors (GPU), with significantly higher computing perfor-
mance to offer. The advantages of GPUs used as a computing
accelerator are seen in their common availability and so in
their easier cooperation with the host hardware platform.

Image processing algorithms usually process images in
a fashion similar to the SIMD model. Since the graphics
processors’ architectures are based on the SIMD hardware
model, it is convenient to test the GPU as an image processing
accelerator.

II. COMPUTE UNIFIED DEVICE ARCHITECTURE

Parallel computing architecture known as CUDA - Compute
Unified Device Architecture [1] provides the computing engine

in NVIDIA graphics processing units (GPU). The engine
features are accessible to software developers through industry
standard programming languages (C with NVIDIA extensions,
etc.).

Since PC gained the capability of 3D imaging, each graphics
card contained a specialized hardware parts for high efficiency
computing. Later re-design of graphics cards architectures to a
unified structure included a generic computing capabilities and
thus became powerful instrument for scientific computations.

Theoretical computing performance of modern graphics
cards exceeds general-purpose processors in order of mag-
nitudes. Modern GPUs with unified architecture comply
with SIMD model and the GPU benefits from the massive
parallelism, provided by a huge number of lightweight threads.
All GPU threads execute the same instructions at once, but on
different pieces of distributed data.

If the specific algorithm or its part fits the SIMD model, the
use of CUDA can lead to substantial increase of computing
performance.

III. PROBLEM DEFINITION

Given an image (a photo) impaired by the effects of blur and
camera movement, the goal of blind deconvolution methods is
to restore the original image without previous knowledge of
these degrading effects.

Applying stochastic approach and assuming linearity, the
image degradation can be modelled as multichannel convolu-
tion of an unknown system h(x) and original image u(x) with
added noise n(x):

zk(x) = (hk ? u)(x) + nk(x) , k = 1, . . . ,K ,

where k denotes the channel and K is the number of channels.
In [2], authors presented the method of Multichannel Blind

Deconvolution of Spatially Misaligned Images and they prove
theirs approach of image restoration using an alternating
minimization (AM) algorithm for the maximum a posteriori
probability (MAP) estimator. The algorithm implementation
was then derived to a solution of linear problem Ax = b,
where the matrix A is consistently updated. Note that this
update includes image-blur convolutions discussed in this
paper.
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IV. IMPLEMENTATION DETAILS

The blind deconvolution algorithm can be split into a set
of single tasks if the following assumption is applied: Camera
movement (blur and spatial shift of the image) can have only
a specific nature and thus there is only a small set of possible
blur matrices that describe these degrading effects. In other
words, the original image estimates are enumerated by a group
of single algorithm tasks, whereas each task processes different
presumed estimate of possible blur system matrix.

From the implementation point of view, the algorithm
iteratively enumerates key properties of the original image
estimate and blur system properties to achieve required energy
minima (algorithm optimum). Including an initial estimate of
original image, particular steps of the algorithm can be briefly
described as: construction of image derivative, enumeration of
gradients, enumeration of energy function and update of the
image estimate according to previous results.

The study of the deconvolution algorithm and its initial
implementation revealed some critical points. Firstly, the algo-
rithm contains sequential parts with strong data dependencies
that cannot be effectively parallelized. Secondly, the convo-
lution routines that enumerate 2D convolutions of images
and blur systems were identified as the slowest parts of the
algorithm decreasing its overall performance. This observation
led us to focus on the effective parallel implementation of
convolution cores to increase their performance.

A. Prior implementation
The algorithm authors [2] developed an optimized

C-language implementation using the FFTW program library
[3] as the engine for 2D convolution enumeration.

The FFTW engine performance optimizations were applied
including the pre-computation of FFT plan and the multi-
threading feature. The C compiler optimizations, including
the Streaming SIMD Extension (SSE), were also applied to
achieve the best possible performance.

B. CUDA accelerator
The first version of the accelerator implements the 2D-

convolution with a naive approach. This implementation enu-
merates the result in two loops that control matrices shift in
both dimensions. The inner computation is realized with the
GPU threads aligned in two-dimensional blocks.

The second approach implements the 2D convolution using
Fourier transform method. The convolution function is realized
so that both degraded image and blur system matrices are
transformed and multiplied on the graphics processor using
the CUFFT component and custom arithmetic routines.

Both CUDA accelerators were extended to comprise the
inner part of gradient routine, where the convolution routines
occurred twice. With this extension the overhead was removed
and overall performance increased.

V. PERFORMANCE MEASUREMENTS

The performance results of all three implemented variants
(CPU, accelerated by CUDA using naive approach and accel-
erated using CUDA CUFFT) are presented in Table I.

TABLE I
TIMING AND FPS MEASUREMENTS - GEFORCE GTX260

Image
size

CPU
with FFTW

CUDA
naive approach

CUDA
with CUFFT

1 Mpix 2.6 s 4.1 s 1.3 s
2 Mpix 4.6 s 6.3 s 2.0 s
4 Mpix 9.7 s 13.1 s 4.0 s
8 Mpix 55.6 s 26.8 s 13.8 s
1 Mpix 5.1 fps 3.2 fps 10.3 fps
2 Mpix 2.8 fps 2.1 fps 6.5 fps
4 Mpix 1.3 fps 1.0 fps 3.3 fps
8 Mpix 0.2 fps 0.5 fps 0.9 fps

All presented values were acquired as arithmetic average
of three consecutive measurements and additional frame per
second rate values were computed.

The important parameters were kept the same during all
measurements. The floating point arithmetic was set to the
single precision number representation. Input image sizes
varied from 1 to 8 Megapixel, while the blur system matrices
kept of the same size [11 × 11] as recommended by the
algorithm authors.

VI. CONCLUSION

The performance results achieved for all three realizations
of blind image deconvolution method indicate that such a
complex image processing method can be accelerated using
the CUDA and graphics card even if there is an optimized
implementation on modern general-purpose CPU platform.

With an astonishing theoretical performance capabilities
of the latest graphics cards, higher increase increase in
performance was expected from the CUDA accelerator we
implemented. The speed-up was lower than expected, which
can be justified by the fact that the deconvolution algorithm
contains a significant number of sequential parts that cannot
be parallelized.

Nevertheless, the naive implementation approach within
the CUDA convolution routine represents a competitive al-
ternative for the case with large input images and powerful
graphics card. This observation approves suitability of the
SIMD paradigm for image processing. The usage of Fourier
transform in the other implementation shows roughly twofold
performance increase as it has been expected.
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